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Abstract

We study a system of branching Brownian motions on R with annihilation: at each
branching time a new particle is created and the leftmost one is deleted. The case
of strictly local creations (the new particle is put exactly at the same position of the
branching particle) was studied in [10]. In [11] instead the position y of the new
particle has a distribution p(x, y)dy, x the position of the branching particle, however
particles in between branching times do not move. In this paper we consider Brownian
motions as in [10] and non local branching as in [11] and prove convergence in the
continuum limit (when the number N of particles diverges) to a limit density which
satisfies a free boundary problem when this has classical solutions. We use in the
convergence a stronger topology than in [10] and [11] and have explicit bounds on
the rate of convergence.
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1 Introduction

The system considered in this paper fits in a class of models proposed by Brunet and
Derrida in [3] to study selection mechanisms in biological systems and continues a line
of research initiated by Durrett and Remenik in [11].

Durrett and Remenik have in fact studied a model of particles on R which indepen-
dently at rate 1 branch creating a new particle whose position is chosen randomly with
probability p(x, y)dy, p(x, y) = p(0, y − x), if x is the position of the generating particle.
At the same time the leftmost particle is deleted so that the total number of particles is
constant.
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Non local branching Brownian motions with annihilation

In the biological interpretation particles are individuals in a population, the position
of a particle is “its degree of fitness”, the larger the position the higher the fitness. If
the environment supports only populations of a given size then to each birth there must
correspond a death. The removal of the leftmost and hence less fitted particle is a very
effective Darwinian selection rule to implement the conservation of the population size.
Even if the duplication rule is regressive, i.e. p(x, y) has support on y < x, nonetheless
the population fitness improves and if p(0, x) > 0 for x ∈ (−a, 0), a > 0, then as time
diverges the whole population concentrates around the position of the initially best
fitted individual. Durrett and Remenik have studied the case where p(x, y) is symmetric
and discussed the occurrence of traveling - wave solutions which describe a steady
improvement of the population fitness, see also [15] and Brunet, Derrida [1], [3] for the
analysis of traveling waves in a large class of systems.

Such issues are better studied in the continuum limit N →∞, the natural guess for
the continuum version of the Durrett and Remenik duplication process is

∂

∂t
ρ(x, t) =

∫ ∞
Xt

dy p(y, x)ρ(y, t)dy, x ≥ Xt; ρ(r, 0) = ρ0(r) (1.1)

where ρ(x, t) is the particles density and Xt = sup{r : ρ(r, t) = 0}. The removal process
in the continuum is more implicit and given by the condition on Xt that for all t ≥ 0∫ ∞

Xt

dy ρ(y, t) = 1 (1.2)

Under suitable assumptions on the initial datum ρ0 and on the probability kernel p(x, y)

Durrett and Remenik have proved that (1.1) and (1.2) have a unique solution and that
this is the limit density of the particles system.

(1.1) has a nice probabilistic interpretation:

ρ(x, t) = etEx

[
ρ0(x∗(t))1τ>t

]
(1.3)

where x∗(t) is the jump Markov process with generator

A∗f(x) =

∫
dy p∗(x, y)

(
f(y)− f(x)

)
, p∗(x, y) = p(y, x) (1.4)

and
τ = inf{t : x∗(t) ≤ Xt} (1.5)

(1.3) is the backward Kolmogorov equation for the jump process with generator A equal
to the adjoint of A∗ (i.e. when the jump x→ y has probability p(x, y)).

Similar formulas hold as well in the case considered in this paper where we study
a natural extension of the Durrett-Remenik model where particles move as independent
Brownian motions in between branching times: biologically this means that the indi-
viduals fitness changes randomly in time. As in [11] the new particles are created at
random positions with probability p(x, y) and, like before, as soon as a particle is created
the leftmost one is deleted. We have already studied in a previous paper, [10], the case
where p(x, y) = δ(y − x), namely when the duplication is exact. The extension to general
p(x, y), which is the aim of this paper, is obtained following the same scheme used in
[10], and indeed some of the proofs are straightforward adaptation of those in [10] and
its details are omitted. We thus focus on the new parts for which we give complete
details.

The main novelty in this paper, besides the non locality of the branching, is the use of
a strong topology in the convergence of the process based on the Kolmogorov-Smirnov

EJP 24 (2019), paper 63.
Page 2/30

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP324
http://www.imstat.org/ejp/


Non local branching Brownian motions with annihilation

distance. We will obtain explicit bounds on the rate of convergence. We will also show
that the limit density is the solution of a free boundary problem provided this has a
classical solution.

In the next two sections we make precise the model and state the main results, an
outline of how the paper is organized is then given at the end of Section 3. We conclude
this introduction by mentioning that there have been several papers about particles
processes which in the continuum limit are described by free boundary problems. Some
of them will be mentioned in the sequel, for a list we refer to a survey on the subject, [6].

2 The model

We will consider in this paper several processes, the main one is x(t) (also called
sometimes the “true process”). We will also use auxiliary processes xδ,±(t), δ a positive
parameter, called the upper and lower stochastic barriers. We define all of them in a
common space as subsets of a “basic” process y(t) that we define next.

The “basic” process y(t).

The state space of the “basic” process y(t) is the set of configurations with finitely many
point particles, we will denote by |y| the number of particles in a configuration y. If
convenient we may label the particles by writing y(t) = (y1(t), . . . , yn(t)), sequences
which only differ for the labelling are however considered equivalent.

To define the process we attach to each particle an independent exponential clock
of intensity 1: when it rings for a particle (call x its position when its clock rings) then
a new particle is created at position y with probability p(x, y)dy, assumptions on p(x, y)

are stated later. In between clock rings the particles are independent Brownian motions.
P denotes the law of the process and when needed we will write P y0 to specify that the
process starts from y

0
.

The basic process is well known in the literature see for instance [12].

The “true” process x(t).

As in the basic process each particle of x(t) has an independent exponential clock of
intensity 1 and in between clock rings the particles are independent Brownian motions.
Also for x(t) when a clock rings for a particle (call x its position) then (like in the basic
process) a new particle is created at position y with probability p(x, y)dy, here however
at the same time when a new particle is created the leftmost particle (among those
previously present plus the new one) is deleted, so that |x(t)| is constant. Evidently x(t)

can be realized as a subset of y(t) obtained by disregarding in y(t) the particles which in
x(t) are deleted as well as all their descendants.

The stochastic barriers xδ,±(t).

They are defined like x(t), (see Subsection 5.1) the difference being that the removal of
particles is not simultaneous to the branching but it occurs at discrete times kδ, k ∈ N,
δ > 0.

The initial configuration.

We will study the process x(t) having fixed the initial number of particles, denoted by N .
We will tacitly suppose in the whole sequel that N ≥ N0, where N0 is a large positive
integer, requests on N0 will be stated in the course of the proofs. The process starts
from an initial configuration x0 whose distribution is obtained by taking N independent
copies of a position variable distributed with probability ρ0(r)dr. We suppose that ρ0(r)

is a smooth (C∞) probability density with support in [−A,A], A > 0. Thus x(t) is realized
as a subset of the basic process which starts from y(0) = x0 and its law will be denoted

by P (N).
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Non local branching Brownian motions with annihilation

Assumptions on p(x, y).
The jump probability density p(x, y) is translation invariant, namely p(x, y) = p(0, y − x).
p(0, x) is a smooth (C∞) function with finite range: p(0, x) = 0 when |x| ≥ ξ, ξ > 0.

The assumptions on ρ0 and p(x, y) could be relaxed but we would have some more
technical details to take care of.

The counting measure.
Given a particle configuration x we call

πx(dr) :=
∑
x∈x

δx(r)dr (2.1)

the associated counting measure. Our aim is to study the behavior of the probability
measure 1

N πx(t)(dr), N = |x(0)|, for large N in a time interval [0, T ], T > 0.
In the next section we state the main results and, at the end, outline the way the

paper is organized.

3 Main results

Our main result is that under P (N) the counting measure 1
N πx(t)(dr) of the true

process has a limit when N → ∞, converging to a measure u(r, t)dr with u(r, t) a
continuous function. We will use the Kolmogorov-Smirnov topology, see below, and we
will give explicit bounds on the convergence rate.

The Kolmogorov-Smirnov distance (K-S distance for brevity) between probability
measures on R is defined as

|µ− ν|KS := sup
r∈R

∣∣∣µ[[r,∞)
]
− ν
[
[r,∞)

]∣∣∣} (3.1)

CallM the space of probability measure valued functions on R+ whose elements are
denoted by µ = (µt)t≥0. We define a topology inM using the K-S distance as follows.

The neighborhoods XT,ε,n(ν).
T > 0 is the time window where we study the process. We use a time grid with mesh δ:

tk = kδ, δ = 2−nT, k = 0, 1, .., 2n (3.2)

Calling ε > 0 an accuracy parameter we then set for ν ∈M:

XT,ε,n(ν) =
{
µ ∈M : |µtk − νtk |KS < ε, k = 0, 1, .., 2n

}
(3.3)

The limit density u(r, t).
In Theorem 3.1 below we will prove convergence of the counting measure ( 1

N πx(t)(dr))t≥0

to a limit u := (u(r, t)dr)t≥0 where u(r, t) is a continuous function. u(r, t) is characterized
by such property but also as limit of “deterministic barriers” as discussed in Theorem 3.2.

Theorem 3.1. There is N0 so that for N ≥ N0 the following holds. Let u as above then
there are c and c∗ so that:

P (N)
[
(

1

N
πx(t)(dr))t≥0 ∈ XT,ε,n(u)

]
≥ 1− c2nec

∗2−nTN−
1
6 (3.4)

with T, ε, n,N such that T < log logN and

ε > c
( eT√

T
23n/2N−1/12 + e2T T

N1/24

N1/24!
+ eTN−1/12 + 2−neTT

)
(3.5)
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Remarks.
• There are constraints on the values of T , ε and n because the last condition stated
in (3.5) requires that ε > c2−neTT (2−nT being the mesh δ, see (3.2)). This seems to
contradict the statement about the convergence of the process to u: take for instance
n0, T and ε so that ε < c2−n0eTT , then (3.5) is not satisfied no matter how large is N .
However XT,ε,n(u) decreases as n increases, therefore

P (N)
[
(πx(t)(dr))t≥0 ∈ XT,ε,n0

(u)
]
≥ P (N)

[
(πx(t)(dr))t≥0 ∈ XT,ε,n(u)

]
, n ≥ n0

We then take n > n0 so large that ε > c2−neTT and then apply (3.4).
• No matter how small we take the mesh of the time grid (i.e. n large), the time span T
and the accuracy ε (provided ε > c2−neTT ), yet we can take N so large that the process
is in XT,ε,n(u) with large probability (1− c2nN−α).
• We will characterize the limit density u(r, t) as the solution of a free boundary problem,
if this has a classical solution, see Theorem 3.3.
• We will next state some results which will be proved in the next sections and show
that with their help Theorem 3.1 then follows.

Mass transport order.
Let µ and ν be finite, positive measures on R, we then write

µ 4 ν if for all r

∫ ∞
r

µ(dr′) ≤
∫ ∞
r

ν(dr′) (3.6)

In such a case ν can be obtained from µ by “moving mass to the right”.

We will use in the whole sequel the following notation: let f(t), t ∈ R be such that for
any t the right and left limit of f(s) as s→ t exists, then

lim
s↑t

f(s) =: f(t−), lim
s↓t

f(s) =: f(t+) (3.7)

We will prove that the limit density u(r, t) of Theorem 3.1 is the limit of lower and
upper barriers, denoted by ρδ,±(r, t), δ > 0. Their definition is given in Section 4.3, their
main property is:

Theorem 3.2. Let T > 0, δ = 2−nT , tk = (kδ)+, k ≤ 2n. We then have

ρδ,−(r, tk)dr 4 ρδ,+(r, tk)dr (3.8)

and
ρδ,−(r, tk)dr 4 ρδ/2,−(r, tk)dr, ρδ/2,+(r, tk)dr 4 ρδ,+(r, tk)dr (3.9)

Finally, there is a continuous function u∗(r, t) such that for all k ≤ 2n

ρδ,−(r, tk)dr 4 u∗(r, tk)dr 4 ρδ,+(r, tk)dr (3.10)

u∗(r, t)dr is the unique element which separates the barriers in the L1 sense because for
δ ≤ 1, the barriers are L1-close:∫

dr
∣∣ρδ,−(r, tk)− ρδ,+(r, tk)| ≤ ceT δ (3.11)

We give a detailed proof of (3.11) in Subsection 4.3 and refer to the literature for the
proof of the other statements in Theorem 3.2 as very analogous to those in [6] and [5]
[8], [9] for similar models. We will next use Theorem 3.2 to prove Theorem 3.1 and to
identify u = u∗. We need the following notion: let µ and ν be probabilities on R, we then
define

µ 4 ν modulo ε, if for all R: µ[R,∞) ≤ ν[R,∞) + ε (3.12)

Obviously:

µ 4 ν modulo ε and ν 4 µ modulo ε is equivalent to |µ− ν|KS < ε (3.13)
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3.1 Proof of Theorem 3.1

The proof relies on the validity of Theorem 3.2 and of (3.14) below which is proved in
Section 6 and Section 7. Recalling that δ = 2−nT in agreement with (3.2), we shorthand
below

xk = x(t+k ), ρδ,±k := ρδ,±(r, t+k ); k = 0, .., 2n

P (N)
[
{ρδ,−k dr 4

1

N
πxk 4 ρδ,+k dr, modulo ζ, k = 0, .., 2n}

]
≥ 1− c2n+1ec

∗2−nTN−
1
6

ζ = c
(
eT 2nδ−1/2N−1/12 + e2T 2nN−1/6

)
(3.14)

We next use Theorem 3.2: by (3.10) and (3.11)∣∣ρδ,±k dr − u∗(r, tk)dr
∣∣
KS
≤ ceT δ, k = 0, ., 2n (3.15)

hence by (3.13)

P (N)
[∣∣∣ 1

N
πxk − u

∗(r, tk)dr
∣∣∣
KS

< ζ + ceT δ, ∀k = 0, ., 2n
]
≥ 1− c2n+1ec

∗2−nTN−
1
6 (3.16)

which proves Theorem 3.1 with u = u∗.

3.2 A free boundary problem

We can characterize the limit density u(r, t) in Theorem 3.1 as the solution of a free
boundary problem whenever this has a classical solution. Given a C1 curve γt, t ≥ 0, let
ρ solve

∂

∂t
ρ(r, t) =

1

2

∂2

∂r2
ρ(r, t) +

∫
dy ρ(y, t)p(y, r), r > γt

(3.17)

ρ(r, 0) = ρ0(r), lim
r↓γt

ρ(r, t) = 0

We will prove existence and uniqueness (see Theorem 4.3) and that the solution of (3.17)
has a probabilistic interpretation similar to that in (1.3). The associated free boundary
problem P is the following.

P: Let ρ0(r) be as in the previous section, namely a smooth probability density with
compact support. We further assume that calling γ∗ := inf{r : ρ0(r) > 0}:

ρ0(γ∗) = 0, lim
r↓γ∗

1

2

dρ0(r)

dr
=

∫
dy ρ0(y, t)p(y, γ∗)

Find γt ∈ C1 and ρ(r, t), r ≥ γt in such a way that γ0 = γ∗, ρ(r, t) solves (3.17) and

inf{r ≥ γt : ρ(r, t) > 0} = γt,

∫ ∞
γt

dr ρ(r, t) = 1 for all t ≥ 0 (3.18)

We will prove in Subsection 4.5 that:

Theorem 3.3. If the free boundary problem P has a classical solution (γt, ρ(r, t)) then
ρ(r, t) coincides with the function u(r, t) found in Theorem 3.1 which coincides with
u∗(r, t) of Theorem 3.2.

In [14], Jimyeong Lee has proved local in time existence of classical solution of the
free boundary problem P; more recently J. Berestycki, E. Brunet, S. Penington, [2] have
proved global existence for a class of free boundary problems.

To prove Theorem 3.3 we will show in Theorem 4.8 that a classical solution of the free
boundary problem P (see (3.18)) is squeezed in between the lower and upper barriers
and it thus coincides with u∗(r, t).
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3.3 Outline of the paper

In Section 4 we will define the barriers and prove in subsection 4.5 Theorem 3.3 by
exploiting a probabilistic representation of the solution of the free boundary problem
which is related to one used in the definition of the barriers. In Section 5 we define the
stochastic upper and lower barriers and prove that they squeeze in between the true
process (in the sense of mass transport order). We will prove in Section 6 the missing
statement (namely (3.14)) in the proof of Theorem 3.1 using estimates whose proofs are
postponed to Section 7. In an Appendix we prove some more technical estimates.

4 Probabilistic representations of deterministic evolutions

In Subsection 4.1 we study a version of (3.17) extended to the whole R, called the
free evolution equation. In Subsection 4.2 we then study (3.17) itself, supposing that γt
is a given C1 curve. The important point in both cases is a probabilistic representation
of the solutions which will be often used in the sequel. In Subsection 4.3 we will define
the “lower and upper barriers”. Then after stating some a-priori bounds in Subsection
4.4, in Subsection 4.5, using the previous analysis and in particular the probabilistic
representation of the solution of (3.17), we will prove that a classical solution of the free
boundary problem, when it exists, coincides with the separating element of Theorem 3.2.

4.1 The free evolution

The free evolution equation is

∂

∂t
ρ(x, t) =

1

2

∂2ρ(x, t)

∂x2
+

∫
dy p∗(x, y)ρ(y, t), p∗(z, z′) = p(z′, z) (4.1)

We will also consider:

∂

∂t
u(x, t) =

1

2

d2u(x, t)

dx2
+

∫
dy p∗(x, y)[u(y, t)− u(x, t)] (4.2)

Recall from Section 2 that p(x, y) = p(0, x− y) and p(0, z) ∈ C∞ with compact support.
We will study the two equations with initial data ψ ∈ Cb(R,R+) which denotes the space
of non negative, bounded, continuous function on R.

Notice that if u(x, t) solves (4.2) then ρ(x, t) := etu(x, t) solves (4.1) and viceversa if
ρ(x, t) solves (4.1) then u(x, t) = e−tρ(x, t) solves (4.2), thus the two equation are closely
related. We will see that (4.2) is the backward Kolmogorov equation for the process of a
Brownian motion on R with jumps occurring independently at rate 1 with probability
p(x, y), hence the probabilistic interpretation of the two equations.

Theorem 4.1. Given any x ∈ R there is a unique solution T ∗t (y, x) of (4.1) with initial
condition δx(y): T ∗t (y, x) is then the Green function for (4.1).

T ∗t (y, x) is C∞ in y and t for t > 0 and there are c and c′ independent of x such that

T ∗t (y, x) ≤ Gt(y, x) + c(et − 1), Gt(x, y) =
1√
2πt

exp{− (x− y)2

2t
} (4.3)

| ∂
k

∂yk
T ∗t (y, x)| ≤ ‖G(k)

t ‖∞ + ‖p(k)‖∞(et − 1), | ∂
∂t
T ∗t (y, x)| ≤ c′

(
|y − x|−2 + tet

)
(4.4)∫

dy | ∂
∂y
T ∗t (y, x)| ≤ c( 1√

t
+ et) (4.5)

Moreover for each t

lim
|y|→∞

T ∗t (y, x) = 0,

∫
dy T ∗t (y, x) = et (4.6)

Finally S∗t (y, x) = e−tT ∗t (y, x) is the Green function of (4.2).
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Proof. We fix x which will not be made explicit in the notation and start by solving
the integral version of (4.1), namely (4.7) below in the unknown v(y, t). By an abuse
of notation we call Gt and p∗ the integral operators with kernels Gt(x, y) and p∗(y, x)

respectively, then

v(y, t) = Gtδx(y) +

∫ t

0

dsGsp
∗v(·, t− s)(y) (4.7)

explicitly:

v(y, t) = Gt(y, x) +

∫ t

0

ds

∫
dz Gs(y, z)

∫
dz′ p∗(z, z′)v(z′, t− s), x, y ∈ R (4.8)

Iterating (4.7) we get

v(y, t) = Gtδx(y) +

∞∑
n=1

∫
Rn

+

ds1 · · · dsn1s1≤s2 · · ·1sn≤t Bn,s(y) (4.9)

where s = (s1, .., sn) and

Bn,s(y) :=

∫
dz1

{∫
dz′1Gs1(y, z′1)p∗(z′1, z1)

}
· · ·

· · ·
∫
dzn

{∫
dz′n Gsn−sn−1

(zn−1, z
′
n)p∗(z′n, zn)

}
Gt−sn(zn, x) (4.10)

It then follows that for any s: ∫
dy Bn,s(y) = 1

Moreover, calling c := supx p(0, x) and bounding the first p∗ in (4.10) by c we get

Bn,s(y) ≤ c
∫
dz1Bn−1,s′(z1) = c, s′ = (s2, .., sn) (4.11)

Thus the series in (4.9) is convergent, v as given by (4.9) is well defined, (4.3) holds and v
is the unique solution of (4.7). Thus if T ∗t (y, x) exists then it solves the integral equation
and therefore it is unique and T ∗t (y, x) ≡ v(y, t), hence existence and uniqueness of
T ∗t (y, x) will follow once we prove that v(y, t) solves (4.1) for t > 0 with initial datum
δx(y). To do this we need to prove differentiability conditions on v(y, t).

By differentiating (4.9) k times with respect to y, proceeding as in the proof of (4.11),
we get

‖v(k)‖∞ ≤ ‖G(k)
t ‖∞ + ‖p(k)‖∞(et − 1) (4.12)

We are going to use this to prove that v satisfies (4.1). To this end we change s→ t− s
in the integral on the right hand side of (4.8) and differentiate with respect to t, getting

∂

∂t
v(y, t) =

∂

∂t
Gt(y, x) +

∫
dz′ p∗(y, z′)v(z′, t)

+
1

2

∂2

∂y2

∫ t

0

∫
dz

∫
dz′Gt−s(y, z)p

∗(z, z′)v(z′, s) (4.13)

The first and third term on the right hand side reconstruct the second derivative of
v(y, t) with respect to y, hence v satisfies (4.1) for t > 0 with initial datum δx(y) and
T ∗t (y, x) ≡ v(y, t).

Then the first inequality in (4.4) follows from (4.12). To prove the second inequality
in (4.4) we rewrite (4.13) as

∂

∂t
v(y, t) =

∂

∂t
Gt(y, x) +

∫
dz′ p∗(y, z′)v(z′, t)

+

∫ t

0

∫
dz

∫
dz′

1

2
Gt−s(y, z)

∂2

∂z2
p∗(z, z′)v(z′, s)
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Recalling that v(y, s) = T ∗s (y, x), by (4.3) and since p∗(z, z′) is smooth with compact
support we get that

|
∫ t

0

∫
dz

∫
dz′

1

2
Gt−s(y, z)

∂2

∂z2
p∗(z, z′)v(z′, s)|

≤ C
∫ t

0

∫
dz

∫
dz′

1

2
Gt−s(y, z)Gs(z

′, x)

+cet
∫ t

0

∫
dz

1

2
Gt−s(y, z)|

∫
dz′

∂2

∂z2
p∗(0, z′)|

Thus, for a suitable constant c1:

| ∂
∂t
v(y, t)| ≤ | ∂

∂t
Gt(y, x)|+ c1e

tt

hence the second inequality in (4.4). By iteration we prove that all the derivatives of v
with respect to t exist.

Proof of (4.5). By (4.9) and denoting by vy(y, t) the derivative with respect to y and
recalling that the support of p is in [−ξ, ξ],∫

dy |vy(y, t)| ≤ 1√
2π

∫
dy
|x− y|√
t3/2

e−
(x−y)2

2t

+

∞∑
n=1

∫
Rn

+

ds1..dsn1s1≤s2≤..≤sn≤t2ξ‖p′‖∞
∫
dz1Bn−1(z1)

The first term is bounded by c 1√
t

and the second one is bounded proportionally to et.

The proof of the second inequality in (4.6) follows from (4.9) and (4.11). The first one
holds because T ∗t (y, x) is non-negative, it has bounded derivative and it is integrable.

Finally, the last statement of the Theorem follows from what observed after (4.2)

The analogue of (4.9) for S∗t (y, x) is

S∗t (y, x) = e−tGtδx(y) +
∞∑
n=1

∫
Rn

+

ds1..dsn1s1≤s2≤..≤sn≤t

(
{e−s1Gs1}p∗

×{e−(s2−s1)Gs−s1}p∗ · · · {e−(t−sn)Gt−sn}δx
)

(y) (4.14)

(4.14) will be used for the probabilistic interpretation.

Corollary 4.2. The solution ρ of (4.1) with initial datum ψ ∈ Cb(R,R+) is

ρ(y, t) =

∫
dxT ∗t (y, x)ψ(x), ‖ρ(·, t)‖∞ ≤ et ‖ψ‖∞ (4.15)

and for any t > 0, ρ(y, t) ∈ Cb(R,R+). The operator T ∗t whose kernel is T ∗t (y, x) defines a
semigroup on Cb(R,R+).

Analogously the solution of (4.2) with initial datum ψ ∈ Cb(R,R+) is

u(y, t) =

∫
dxS∗t (y, x)ψ(x), ‖u(·, t)‖∞ ≤ ‖ψ‖∞ (4.16)

and the operator S∗t on Cb(R,R+) whose kernel is S∗t (x, y) defines a semigroup on
Cb(R,R+) with S∗t = e−tT ∗t .

EJP 24 (2019), paper 63.
Page 9/30

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP324
http://www.imstat.org/ejp/


Non local branching Brownian motions with annihilation

Probabilistic interpretation. As mentioned the solutions of (4.2) have a probabilistic
meaning. Let X = {Xt, t ≥ 0}, be a Brownian motion on R with jumps occurring
independently at rate 1 with probability p(x, y). This process can be realized in the
product space X = X(B, t, Z) where: B = {Bt, t ≥ 0} is a standard Brownian motion,
t = {tn, n ≥ 1} is a Poisson process on R+ of intensity 1 and Z = {Zn, n ≥ 1} is a i.i.d.
sequence with distribution p(0, Z). Xt is then realized by setting Xt = Xt+n

+ Bt − Btn
when t ∈ (tn, tn+1) and setting Xt+n

−Xt−n
= Zn.

The dual process has the same structure but with each Zn having probability p∗(0, Z).
Then by (4.14) for any bounded continuous function

Ex[f(Xt)] =

∫
dy S∗t (y, x)f(y)

This means that the Markov semigroup St of the process X on C0(R,R+) is the dual of
the Markov semigroup S∗t , thus it has a density St(x, y) = S∗(y, x) and

Ex[f(Xt)] =

∫
dy St(x, y)f(y)

4.2 The evolution in semi-infinite domains

There is also a probabilistic representation for the solution of (3.17) for a given
C1- curve Γ = {γt, t ≥ 0}. Let X = {Xt, t ≥ 0} be the process defined in the previous
subsection and call τs = inf{t > s : Xt ≤ γt}. Given s ≥ 0 and Xs > γs we define for t > s

XΓ
t;s =

{
Xt if τs > t

−∞ otherwise
(4.17)

For s ≥ 0 and x > γs we call Px,s
(
XΓ
t ∈ dy

)
the law at time t > s of XΓ

t ≡ XΓ
t;s on R with

XΓ
s = x and claim that it has a density with respect to the Lebesgue measure, denoted

by αx,s(y, t). This follows because

Px,s
(
XΓ
t ∈ dy

)
= Px,s

(
Xt ∈ dy; τs > t

)
≤ Px,s

(
Xt ∈ dy

)
= St−s(x, y)dy (4.18)

We will simply write αx(y, t) for αx,0(y, t).

The main result of this subsection is the following theorem.

Theorem 4.3. For all x ∈ R and all t > s0 ≥ 0, αx,s0(·, t) ∈ C∞((γt,∞),R+) and
it is differentiable in t. Furthermore vx,s0(y, t) := et−s0αx,s0(y, t) satisfies (3.17) and
vx,s0(y, s0) = δx(y).

We split the proof of Theorem 4.3 in three statements: in Lemma 4.4 we prove that
αx,s0(y, t) is smooth, in Lemma 4.5, we prove that αx,s0 is 0 at the boundary and finally
in (4.22) we compute the time- derivative of αx,s0(y, t). All that proves Theorem 4.3.

Lemma 4.4. For all t > s0 ≥ 0, αx,s0(·, t) ∈ C∞((γt,∞),R+), it is differentiable in t and
for all x > γ0

αx,s0(y, t) = St−s0(x, y)−
∫ t

s0

∫
z≤γs

qx,s0(dsdz)St−s(z, y), y > γt (4.19)

where qx,s0(dsdz) = Px,s0(τs0 ∈ ds,Xs ∈ dz). Moreover

sup
x>γs0 ,y>γt

αx,s0(y, t) <∞ (4.20)
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Proof. For notational simplicity we take s0 = 0. Call Ax(y, t) the right hand side of (4.19).
By Theorem 4.1, Ax(y, t) is a smooth function of y in {y > γt} and it is differentiable in t.
Thus we only need to prove that Ax(y, t) = αx(y, t). For all f with support on y > γt

Ex(f(XΓ
t )) = Ex(f(Xt)1τ0>t) = Ex(f(Xt))− Ex(f(Xt)1τ0≤t)

By conditioning

Ex(f(Xt)1τ0≤t) =

∫ t

0

∫
z≤γs

qx(dsdz)Ez[f(Xt−s)]

Then ∫
dy αx(y, t)f(y) =

∫
dy Ax(y, t)f(y)

and (4.19) follows by the arbitrariness of f . (4.20) follows from (4.18) after using
Theorem 4.1 to bound St−s0(x, y).

Lemma 4.5. For all t > s0 ≥ 0 and x > γs0

lim
z→γt

αx,s0(z, t) = 0 (4.21)

Proof. For notational simplicity we take s0 = 0. Let 0 < s < t then, by conditioning
αx(z, t) =

∫∞
γs
dy αx(y, s)αy,s(z, t). Using the reverse process we get

αx(z, t) = E∗z
[
αx(X∗t−s, s);X

∗
s′ > γt−s′ , s

′ ∈ [0, t− s]
]

where E∗ denotes expectation with respect to the dual process X∗t . By (4.20) there is c
so that the last term is bounded by

αx(z, t) ≤ cP ∗z
[
X∗s′ > γt−s′ , s

′ ∈ [0, t− s]
]

Since γt is C1 the right hand side vanishes as z → γt.

Let t > s0 ≥ 0, then for all y > γt

∂αx,s0(y, t)

∂t
=

1

2

∂2αx,s0(y, t)

∂y2
+

∫ ∞
γt

dz p(z, y){αx,s0(z, t)− αx,s0(y, t)} (4.22)

(see for instance [4]).

4.3 The deterministic barriers

In this Subsection we define the deterministic barriers ρδ,±(·, t), δ > 0, which appear
in Theorem 3.2. We first define ρδ,±(x, tk) for any positive integer k. To this end we first
introduce the cut operators C±δ as follows. CallingMa, a > 0, the set of v ∈ L1(R,R+)

such that
∫
dx v(x) = a we define C−δ :M1 →Me−δ as the operator which cuts on the

left a mass 1− e−δ. Analogously C+
δ :Meδ →M1 cuts on the left a mass eδ − 1. Thus

C+
δ v(x) = 1x≥V + v(x), V + such that

∫ ∞
V +

dx v(x) = 1

(4.23)

C−δ v(x) = 1x≥V − v(x), V − such that

∫ ∞
V −

dx v(x) = e−δ

Let T ∗t be the operator defined in Corollary 4.2, then T ∗δ C
−
δ : M1 → M1 and C+

δ T
∗
δ :

M1 →M1. Moreover for any fixed v ∈M1 and any integer k > 0 we set

ρδ,−(x, tk) = (T ∗δ C
−
δ )kv(x), ρδ,+(x, tk) = (C+

δ T
∗
δ )kv(x) (4.24)

We finally define

ρδ,±(x, t) = T ∗t−kδρ
δ,±(x, kδ) for kδ < t < (k + 1)δ (4.25)
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Proof of (3.11). Let δ < 1 and shorthand T ∗ = T ∗δ , C± = C±δ . (3.11) follows from

‖(C+T ∗)kv − (T ∗C−)kv‖L1 ≤ ekδ(eδ − e−δ) + 2eδ(eδ − 1) (4.26)

which holds for any k > 0 and any v ∈M1 as we are going to prove.
For any w ∈M1

eδC−w = C+eδw (4.27)

and since eδT ∗ = T ∗eδ we have

(T ∗C−)kv = e−δφ, φ := T ∗
(

(C+T ∗)k−1
)
eδC−v ∈Meδ

(4.28)

(C+T ∗)kv = C+ψ, ψ := T ∗
(

(C+T ∗)k−1
)
v ∈Meδ

By (4.23)
‖eδC−v − v‖L1 ≤ 1− e−δ + ‖(eδ − 1)v‖L1 = eδ − e−δ (4.29)

so that
‖ψ − φ‖L1 ≤ eδk

(
eδ − e−δ

)
(4.30)

By (4.28)
‖(C+T ∗)kv − (T ∗C−)kv‖L1 ≤ ‖e−δφ− C+ψ‖L1 (4.31)

and finally, recalling that ψ and φ are inMeδ ,

‖e−δφ− C+ψ‖L1 ≤ ‖ψ − φ‖L1 + (1− e−δ)eδ + (eδ − 1)eδ

Hence (4.26).

4.4 A priori bounds

We will prove below that if the initial datum ρ0 is bounded then both the solution of
(4.1) and the barriers are bounded. To prove such a result we will use the probabilistic
representation of the evolution.

Lemma 4.6. Let N > N0, N0 and ρ0 as in the paragraph “The initial configuration”. Let
ρ(x, t) the solution of (4.1) with initial condition ρ0.

Then for any b > 0 there is cb so that for any t < log logN∫
|x|≥Nb

dx ρ(x, t) ≤ cbet
tN

b/2

N b/2!
(4.32)

Proof. Let [−A,A] be the support of ρ0, then by (4.15)∫
|x|≥Nb

dx ρ(x, t) =

∫ A

−A
dx ρ0(x)

∫
|y|≥Nb

dy eteLt(x, y)

Let [−ξ, ξ] be the support of p(0, y − x) then the above integral is bounded by the sum

of (1) the probability that the number n(t) of jumps is n(t) ≥ Nb−A
2ξ ≥ N b/2 and (2) a

Brownian motion B(t) starting from 0 is |B(t)| ≥ Nb−A
2 . Since N > N0 and t < log logN ,

the second term is bounded by the first one so that (4.32) follows.

The fact that the barriers are bounded is a consequence of the following Lemma.

Lemma 4.7. Let ρ(x, t) be the solution of (4.1) with initial condition ρ0. Then the
deterministic upper and lower barriers with same initial condition are bounded by:

ρδ,±(x, tk) ≤ ρ(x, tk), ∀x ∈ R, tk = kδ, k ≥ 0 (4.33)

Proof. Observe that for all functions f and g in C0(R,R+), we have that T ∗t (f + g)(x) ≥
T ∗t f(x) for all x ∈ R. Also for all non-negative function f ∈ L1 we have that C±f ≤ f .
Thus (4.33) obviously holds.
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4.5 Proof of Theorem 3.3

In this subsection we establish a relation between the free boundary problem and
the deterministic barriers and prove Theorem 3.3 namely that the classical solution of
the free boundary problem, when it exists, is the separating element (in the L1 sense) of
the deterministic barriers. To prove this it is enough to show that the classical solution
is squeezed in between the lower and the upper barriers which is done in Theorem
4.8 below. The proof of the theorem is similar to others for analogous models, they
all exploit the representation of solutions of the heat equation in terms of Brownian
motions, in particular that the hitting probability of a Brownian motion at a curve γt has
a density with respect to Lebesgue, a property which is well known for C1 curves but
which extends to Holder curves with parameter > 1/2, see [13].

Assume (ρ(·, t), γt)t∈[0,T ] is a classical solution of the free boundary problem P (see
(3.18) recalling that the initial datum is a probability density ρ0 ∈ L∞(R,R+).

Theorem 4.8. Let T > 0, δ = 2−nT , tk = (kδ)+, k ≤ 2n. Consider the deterministic
barriers with initial datum ρ0, then for all k

ρδ,−(·, tk) 4 ρ(·, tk) 4 ρδ,+(·, tk) (4.34)

Proof. We use the probabilistic representation of Section 4.2, thus for any r ∈ R∫ ∞
r

ρ(x, t)dx = et
∫
ρ0(x)Px

(
XΓ
t > r

)
dx = et

∫
ρ0(x)Px

(
Xt > r; τ > t

)
dx (4.35)

Recall that by (3.18) the left hand side for r = −∞ is equal to 1. Observe that this
implies that the distribution of τ is exponential of parameter 1.

Upper bound k = 1. Recall that ρδ,+(x, δ) = C+T ∗δ ρ0(x). We prove below that for any
r ∈ R ∫ ∞

r

ρδ,+(x, δ)dx ≥
∫
ρ0(x)eδPx

(
XΓ
δ ≥ r

)
dx (4.36)

Proof. Let V + be such that ρδ,+(x, δ) = T ∗δ ρ0(x)1x≥V + . If r < V +, then∫ ∞
r

ρδ,+(x, δ)dx =

∫ ∞
V +

T ∗δ ρ0(x)dx = 1 ≥
∫
ρ0(x)eδPx

(
XΓ
δ ≥ r

)
dx

If r > V +∫ ∞
r

ρδ,+(x, δ)dx = eδ
∫
ρ0(x)Px

(
Xδ > r

)
dx ≥ eδ

∫
ρ0(x)Px

(
Xδ > r; τ > δ

)
dx

that by (4.35) concludes the proof.

Upper bound for all k. Since ρ(·, δ) 4 ρδ,+(·, δ) and since C+
δ T
∗
δ preserves order (see

Chapter 5 of [6])

C+
δ T
∗
δ ρ(·, δ) 4 C+

δ T
∗
δ ρ

δ,+(·, δ) = ρδ,+(·, 2δ)

Then ρ(·, 2δ) 4 ρδ,+(·, 2δ) is proved as in the case k = 1. By iteration the argument
extends to all k.

Lower bound. We only prove it in the case k = 1, the extension to all k being similar to
the one in the previous case.

We split ρ0 = f + g, f(x) = ρ0(x)1x≥V − , g = ρ01x<V − with V − such that∫
f(x)dx = e−δ, (4.37)
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Then ρδ,−(x, δ) = T ∗δ f(x) thus∫ ∞
r

ρδ,−(x, δ)dx =

∫
f(x)eδPx(Xδ > r)

Instead∫ ∞
r

ρ(x, δ)dx = eδ
∫
f(x)Px

(
XΓ
δ > r

)
dx+ eδ

∫
g(x)Px

(
XΓ
δ > r

)
dx

=

∫
f(x)eδPx(Xδ > r)− eδ

∫
f(x)Px

(
Xδ > r : τ ≤ δ

)
dx+ eδ

∫
g(x)Px

(
XΓ
δ > r

)
dx

We thus need to prove that

eδ
∫
g(x)Px

(
Xδ > r; τ > δ

)
dx ≥ eδ

∫
f(x)Px

(
Xδ > r; τ ≤ δ

)
dx

that we rewrite as follows∫
g(x)Px(τ > δ)Px

(
Xδ > r|τ > δ

)
≥
∫
f(x)Px(τ ≤ δ)Px

(
Xδ > r|τ ≤ δ

)
(4.38)

First we prove that the two measures g(x)Px(τ > δ)dx and f(x)Px(τ ≤ δ)dx have same
mass. The difference of the two masses is∫
g(x)Px

(
τ > δ

)
dx−

∫
f(x)[1− Px

(
τ > δ

)
]dx =

∫
ρ0(x)Px

(
τ > δ

)
dx−

∫
f(x)dx = 0

because from (4.35) we get eδ
∫
ρ0(x)Px(τ > δ) = 1 while

∫
f(x)dx = e−δ by (4.37). We

rewrite (4.38) as∫
µ(dx)Px

(
Xδ > r|τ > δ

)
≥
∫
λ(dx, dz, ds)Pz,s

(
Xδ > r

)
where µ(dx) = g(x)Px(τ > δ)dx and λ(dx, dz, ds) = f(x)dxPx(τ ∈ ds,Xs ∈ dz) namely the
probability that the process hits the region {x ≤ γt} at the point dz at time ds. Since µ
and λ have the same mass (4.38) follows from

Pz,s
(
Xδ > r

)
≤ Px

(
Xδ > r|τ > δ

)
, for all s ∈ [0, δ), z ≤ γs and x ≥ γs

which can be proved as in Section 10 of [6]. We omit the details.

5 Stochastic barriers

5.1 Definition of the stochastic barriers

For each positive real number δ we define two processes xδ,+(t) and xδ,−(t), t ≥
0, called respectively upper and lower stochastic barriers. We are going to define
inductively xδ,±(t). We thus suppose to have defined xδ,±(t) for t ≤ t+k−1 and want to
define xδ,±(t) for t ≤ t+k , tk = kδ.

• The upper stochastic barrier. We set xδ,+(0+) = x(0) and suppose inductively that
we have defined the process till time t+k−1, k ≥ 1. For t ∈ [t+k−1, t

−
k ] the process

xδ,+(t) is defined as the basic process y(t) starting from xδ,+(t+k−1), namely the
particles evolve as independent Brownian motions with non local branching. Calling
xδ,+(t−k ) the final positions of these particles (i.e. at time t−k ), we then define

xδ,+(t+k ) := N rigthmost particles of xδ,+(t−k ). (5.1)
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• The lower stochastic barrier. The definition is again by induction and it depends
on a number α0 ∈ (1/2, 1), we will eventually set α0 = 2/3, see (7.3). Call

Mδ := (1− e−δ)N +Nα0 (5.2)

Initially we set xδ,−(0+) as the configuration obtained from x(0) by deleting the
leftmost Mδ particles and then define xδ,−(t), 0+ = t0 ≤ t ≤ t−1 as follows. We
let evolve the N − Mδ particles in xδ,−(0+) as in the basic process, namely as
independent Brownian motions with non local branching. If there is τ ∈ (0, t1)

such that |xδ,−(τ)| = N , then xδ,−(t) for t > τ is defined as independent Brownian
motions without branching, therefore N −Mδ ≤ |x−δ (t−1 )| ≤ N . Define xδ,−(t+1 ) as
the configuration obtained from x−δ (t−1 ) by deleting the |x−δ (t−1 )|−(N−Mδ) leftmost
particles. Thus |xδ,−(t+1 )| = N −Mδ and so we can iterate the definition.

It follows from their definition that xδ,±(t) can be realized as subsets of the basic process
y(t).

5.2 Stochastic inequalities

We will construct couplings to prove:

Theorem 5.1. For each positive real number δ there is a coupling of the two processes
x(t) and xδ,+(t) so that at all t ≥ 0

πx(t) 4 πxδ,+(t) (5.3)

There is also a coupling of x(t) and xδ,−(t) so that at all t ≥ 0

πxδ,−(t) 4 πx(t) (5.4)

We fix δ > 0 and, to have lighter notation, we will sometimes omit the dependence on
δ. We prove the upper bound in Subsection 5.3 and the lower bound in Subsection 5.4.

In the definition of the couplings it is convenient to label the particles, however
this is fictitious because two labelled configurations which only differ by the labels are
equivalent. A labelled configuration x = (x1, .., xN ) is “ordered” if xi ≤ xi+1. We then say
that xord is a reordering of x if xord is the relabelling of x such that xord is ordered. We
obviously have:

Lemma 5.2. Let x = (x1, .., xN ) and z = (z1, .., zN ), then the following statements are
equivalent.

S1. πx 4 πz

S2. There is a permutation γ of {1, .., n} so that xγi ≤ zγi , for all i = 1, .., N

S3. Let xord and zord be the reordering of x and z, then xord
i ≤ zord

i .

5.3 Upper bound

We will define an auxiliary process z(t) of red and blue colored particles in such a way
that its marginal neglecting the colors has the law of xδ,+(t). We will couple z(t) with
the true process x(t) in such a way that πx(t) 4 πz(B)(t), where z(B)(t) denotes the subset
of z(t) made of its blue particles, the upper bound then follows because πz(B)(t) 4 πz(t).

Definition. The auxiliary process z(t) and the coupling.
We define inductively both z(t) and the coupling in the time intervals (t+k , t

+
k+1], supposing

by induction that |z(t+k )| = N and z(t+k ) = z(B)(t+k ), namely that at time t+k there are N
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particles and they are all blue; we also suppose that πx(t+k ) 4 πz(t+k ) with probability 1.

This holds initially because we set z(0) = z(B)(0) = x(0).

We will prove in Lemma 5.3 below that if πx 4 πy (both with N particles) then there
is a coupling of the true processes x(t) and y(t) starting from x and y, whose law is
denoted by Q such that Q[πx(t) 4 πy(t)] = 1 for all t ≥ 0. To define z(t) and the coupling

between x(t) and z(t) we are going to use Q in the time intervals (t+k , tk+1) starting from
x(t+k ) and z(t+k ) = z(B)(t+k ), because by induction πx(t+k ) 4 πz(t+k ).

We first define z(B)(t) in (t+k , tk+1) as the true process starting from z(B)(t+k ) and use
Q to couple it with x(t). z(t) is then obtained from z(B)(t) by adding red particles in the
following way: when a particle in z(B)(t) is deleted a red particle is created at the same
place, which then evolves as the basic process independently of all the other particles,
the descendants of a red particle being all red.

The process z(t) constructed in this way and neglecting the colors has obviously the
same law as xδ,+(t) while x(t) is the true process. We have thus defined the desired
coupling in the time interval (t+k , tk+1) and for what said earlier in such interval πx(t) 4
πxδ,+(t).

To complete the induction step we define z(t+k+1) by retaining in z(t−k+1) only the N
rightmost particles (independently of their color) and deleting all the others, we then
paint in blue those which have been left. We thus have πz(B)(t−k+1) 4 πz(B)(t+k+1) and since

x(t−k+1) = x(t+k+1) (with probability 1) we get πx(t+k+1) 4 πz(B)(t+k+1) thus completing the

induction step and hence the proof of the upper bound, pending the validity of the
following Lemma 5.3.

Lemma 5.3. Let x and y be in RN and let πx 4 πy. Then there is a coupling Q of the
true processes starting from x and y such that P [πx(t) 4 πy(t)] = 1 for all t ≥ 0.

Proof. We use an exponential clock of intensity N and define iteratively the process
in the time intervals (sk, s

+
k+1] of successive clock rings. Supposing by induction that

xi(sk) ≤ yi(sk), we let xi(s), i = 1, .., N , be independent Brownian motions and define the
yi(s) to have the same increments as the xi(s). Then by Lemma 5.2 πx(s−k+1) 4 πy(s−k+1)

and using again Lemma 5.2 xord
j (s−k+1) ≤ yord

j
(s−k+1), j = 1, .., N . For brevity we write:

x∗ = xord(s−k+1), x = x(s+
k+1); y∗ = yord(s−k+1), y = y(s+

k+1). At time s−k+1 when the clock
rings we choose i ∈ 1, .., N with equal probability and Z with law p(0, Z)dZ.

We then set x1 := max{x∗1, x∗i + Z}, y1 := max{y∗1 , y∗i + Z} while xj = x∗i , yj = y∗j ,
j > 1, so that xj ≤ yj , j ≥ 1

5.4 Lower bound

We introduce again an auxiliary process zcol(t) of N particles colored in red and blue
in such a way that the blue ones have the same law as xδ,−(t). The initial configuration
zcol(0) is obtained by taking N independent copies of variables zi with distribution
ρ0(y)dy and painting in red the Mδ leftmost particles and in blue the others. To each
blue particle we associate an independent exponential clock of parameter 1. When the
clock rings (say at time t for a blue particle at x) if there are no red particles we do
nothing, otherwise we delete the rightmost red particle and put a new blue particle at
x+Z where Z here and in the sequel is a variable with distribution p(0, z)dz. In between
branching times the particles move as independent Brownian motions.

At the times kδ we do a repainting: let mk be the number of red particles at time
t−k = (kδ)−, k ≥ 1. By definition 0 ≤ mk ≤ Mδ. We then paint in red the Mδ − mk

leftmost blue particles so that at time t+k = (kδ)+ the number of red particles is again
Mδ. Obviously the blue particles in the process zcol(t) have the same law as xδ,−(t).
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Coupling the labelled true and auxiliary processes. The coupled process is a
process in RN × RN × {R,B}N whose elements are denoted by (x, z, σ) writing x =

(x1, .., xN ), z = (z1, .., zN ), σ = (σ1, .., σN ). We define zcol in this space by setting zcol
i =

(zi, σi), zi ∈ R and σi ∈ {R,B} being position and color of particle i. The law of the
coupling will be such that the marginal over x(t) is the true process while the marginal
over the above zcol(t) has the same law as the auxiliary process.

The coupling is based on two points: (i) particles with same label have the same
Brownian increments, (ii) branching events are coupled, they occur at the same time for
x and z, they involve particles with same label and the variable Z is the same for the
two. We will see that in this way at all times the coupled process is in the set

X = {(x, z, σ) : xi ≥ zi, 1 ≤ i ≤ N} (5.5)

This will prove the lower bound (5.4). Indeed by the definition of the process zcol(t) the
blue particles process is the process xδ,−(t) and if σi(t) = B then xδ,−i (t) = zi(t) ≤ xi(t).
Thus the lower bound is proved once we construct a coupling with values in X . The
proof is by induction: we define the coupling inductively first at time t+k and then in the
time interval (tk, tk+1), recall tk = kδ, k ≥ 0.

I If k = 0 we set xi(0) = zi(0), i = 1, .., N , and define σ(0) so that the Mδ leftmost
particles of z(0) are red while the others are blue. If k > 0 we know by induction that
at time t−k the process is in X . We then set xi(t

+
k ) = xi(t

−
k ), zi(t

+
k ) = zi(t

−
k ), i = 1, .., N

and change only the colors in agreement with the definition of the z process: namely we
change from blue to red the color of the Mδ −mk leftmost blue particles (recall that mk

is the number of red particles at time t−k , 0 ≤ mk ≤Mδ). Since positions are unchanged
at time t+k the configuration is again in X .

I It remains to define the coupling in the time interval (tk, tk+1). As for the upper
bound we introduce an exponential clock of intensity N . The coupling is defined so that
the branching times for the two processes are when the clock rings. Suppose the clock
rings at time t ∈ (tk, tk+1). In (tk, t) the particles keep the labels and the colors they had
at time t+k . The xi(s), i = 1, .., N , move as independent Brownian motions and the zi(s)
have the same increments as the xi(s). Hence zi(s) ≤ xi(s) (because this holds at time
t+k ), therefore in such a time interval the process is always in X . If t = tk+1 (or if there is
no ring in (tk, tk+1]) we have finished, let us then suppose t < tk+1.

I Since the process is in X at time t− we get from Lemma 5.2 that πx(t−) 4 πz(t−).
By using again Lemma 5.2 xord

j (t−) ≤ zord
j (t−), j = 1, .., N . For brevity we will write:

x∗ = xord(t−), x = x(t+); z∗ = zord(t−), z = y(t+k+1). To define the coupling from t− to t+

we proceed as in the upper bound and at the clock ring we choose with equal probability
a label i.

If σ∗i = R then z := z∗ while πx∗ 4 πx so that πz 4 πx and by Lemma 5.2 there is a
labelling for which the configuration is in X . Let next σ∗i = B, call k the label of the
rightmost red particle in σ∗. We define the coupling so that for all labels h /∈ 1, i, k

positions and colors are unchanged, hence zh ≤ xh. It remains to consider the particles
with labels 1, i, k, and we have to examine three cases:

• i > 1 and k > 1. Then xi = x∗i , xk = x∗k and x1 = max{x1, xi + Z}; zi := z∗i ,
zk := z∗1 and z1 := z∗i + Z; σi := B, σk := σ∗1 and σ1 := B. The definition ensures
that this is indeed a coupling, the stochastic inequality follows from the way the
labels have been assigned: indeed zi = z∗i ≤ x∗i = xi, zk = z∗1 ≤ x∗1 ≤ x∗k = xk,
z1 = z∗i + Z ≤ x∗i + Z ≤ x1.

• i = 1 (then k > 1 because σ(1) = B and σ(k) = R). Then x1 = max{x∗1, x∗1 + Z},
xk = x∗k; zk := z∗1 , z1 := z∗1 + Z; σ(1) = σ(k) = B. Again this is a coupling and
zk = z∗1 ≤ x∗1 ≤ x∗k = xk, z1 = z∗1 + Z ≤ x∗1 + Z ≤ x1.
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• k = 1 < i. Then xi = x∗i and x1 = max{x∗1, x∗i + Z}; z1 := z∗i + Z, zi := z∗i ; σ(i) = B,
σ(1) = B. Thus z1 = z∗i + Z ≤ x∗i + Z ≤ x1 and zi = z∗i ≤ x∗i = xi

We have thus proved that (x, z, σ) ∈ X . We keep repeating the above procedure at all
times when the clock rings till we reach time tk+1. The induction hypothesis is proved
and we conclude that z(t) 4 x(t) at all times and therefore that xδ,−(t) 4 x(t).

6 Proof of (3.14)

In this section we complete the proof of Theorem 3.1 given in Section 3 by proving
(3.14). The proof however will use Theorem 6.2 which is proved in Section 7. Theorem
6.2 states that the stochastic upper and lower barriers are with “large” probability “close”
to the corresponding deterministic barriers for large N . Closeness is quantified using
the following semi-norms:
Semi-norms. Let µ and ν be positive, finite measures on R and IN the partition of R
into intervals I = [kN−β , (k + 1)N−β), k ∈ Z, (we will eventually fix β = 1

12 ). We then
define (below A ⊂ IN )

‖µ− ν‖IN :=
∑
I∈IN

|µ(I)− ν(I)|, ‖µ− ν‖A =
∑
I∈A
|µ(I)− ν(I)| (6.1)

The semi-norm ‖µ − ν‖IN is the L1-norm of coarse grained versions of µ and ν on the
scale N−β which are defined as

φ(r) =
∑
I∈IN

ν[I]

|I|
1r∈I , ψ(r) =

∑
I∈IN

µ[I]

|I|
1r∈I (6.2)

Indeed (6.1) can be obviously written as

‖ν − µ‖IN =

∫
dr |φ(r)− ψ(r)| (6.3)

The semi-norms control the K-S distance (which, by an abuse of notation, is extended to
finite, positive measures, not necessarily probabilities):

Lemma 6.1. With the above notation

|µ− ν|KS ≤ ‖ν − µ‖IN + sup
I∈IN

{µ[I] + ν[I]} (6.4)

≤ 2‖ν − µ‖IN + sup
I∈IN

ν[I]

Proof. Fix r ∈ R and call Ir the interval in IN which contains r; write I > r for the
intervals to the right of Ir. Then∣∣∣µ[[r,∞)

]
− ν
[
[r,∞)

]∣∣∣ ≤ ∑
I>r

|ν[I]− µ[I]|+ |
∫
Ir

µ(dr′)1r′≥r −
∫
Ir

ν(dr′)1r′≥r|

≤ ‖ν − µ‖IN + µ[Ir] + ν[Ir]

hence the first inequality in (6.4). The second one follows because µ[I] ≤ ν[I] + ‖ν −
µ‖IN .

We will use (6.4) with ν a measure with bounded density with respect to Lebesgue
so that ν(I) ≤ c|I| = cN−β. Therefore the last term in (6.4) will be negligible. In fact
we will use the semi-norms to compare the counting measures 1

N πxδ,±(t)(dr) associated
to the stochastic barriers and the measures ρδ,±(r, t)dr associated to the deterministic
barriers, observing that ρδ±(r, t) are uniformly bounded.
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We recall that T > 0, n ∈ N, δ = 2−nT , tk = kδ, k = 0, .., 2n and we shorthand (in the
whole sequel)

xk = x(t+k ), xδ,±k = xδ,±(t+k ), ρδ,±k = ρδ,±(r, t+k ); k = 0, .., 2n (6.5)

The variables at t−k instead will be written explicitly. In Section 7 we will prove the
following Theorem.

Theorem 6.2. There are c, c∗ and N0 so that for T < log logN and N ≥ N0

P (N)
[
‖ 1

N
πxδ,±k

− ρδ,±k dr‖IN ≤ c ζN,n,T , for all k ≤ 2n
]
≥ 1− c2nec

∗2−nTN−
1
6 (6.6)

where

ζN,n,T = eT 2nδ−1/2N−1/12 + e2T 2nN−1/6, δ = 2−nT (6.7)

Proof of (3.14) (pending the validity of Theorem 6.2). By Theorem 6.2 and (6.4), since
ρδ,±(r, t) ≤ eT (see (4.15) and (4.33))

P (N)
[∣∣ 1

N
πxδ,±k

− ρδ,±k dr
∣∣
KS
≤ 2cζN,n,T + eTN−1/12, k = 0, .., 2n

]
≥ 1− c2nec

∗2−nTN−
1
6

(6.8)
so that, recalling (3.12)–(3.13),

P (N)
[ 1

N
πxδ,+k

4 ρδ,+k dr modulo ε, k = 0, .., 2n
]
≥ 1− c2nec

∗2−nTN−
1
6 ,

ε := 2cζN,n,T + eTN−1/12

Call P the law of the coupling defined in Theorem 5.1, so that, under P, πxk 4 πxδ,+k
.

Then

P (N)
[ 1

N
πxδ,+k

4 ρδ,+k dr modulo ε, k = 0, .., 2n
]

= P
[ 1

N
πxδ,+k

4 ρδ,+k dr modulo ε, k = 0, .., 2n
]

≤ P
[ 1

N
πxk 4 ρδ,+k dr modulo ε, k = 0, .., 2n

]
= P (N)

[ 1

N
πxk 4 ρδ,+k dr modulo ε, k = 0, .., 2n

]
hence

P (N)
[ 1

N
πxk 4 ρδ,+k dr modulo ε, k = 0, .., 2n

]
≥ 1− c2nec

∗2−nTN−
1
6

An analogous argument holds for the lower barriers so that

P (N)
[
{ρδ,−k 4

1

N
πxk 4 ρδ,+k , modulo ε, k = 0, .., 2n}

]
≥ 1− 2c2nec

∗2−nTN−
1
6 (6.9)

which proves (3.14) with a new constant c.

7 Continuum limit of the stochastic barriers

To prove Theorem 6.2 (to which we refer for notation) we must find a “good” set
X good of large probability where the semi-norms ‖ 1

N πxδ,±k
−ρδ,±k dr‖IN are small (see (6.5)

for notation).
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7.1 The good set

X good is the intersection of a good set for the upper barrier and a good set for the
lower barrier, which are both intersections of four good sets, thus

X good =
{ 4⋂
i=1

X+
i

}
∩
{ 4⋂
i=1

X−i
}

(7.1)

All sets are defined on the same space which is the space where the basic process
y(t), t ≥ 0 is realized. They will be defined using parameters which should satisfy the
conditions:

1 + (β + b)

2
< α1 < 1− (β + b), β + b ∈ (0,

1

6
], α0 >

1

2
(7.2)

Our specific choice is

β = b =
1

12
, α1 = α0 =

2

3
, (7.3)

We are now ready to define the good set:
• The first good set is (see (6.5) for notation):

X±1 :=

K⋂
k=1

{x±k ∩ [−N b, N b]c = ∅}, K = 2n (7.4)

To define the second good set we need the following notation:

IN = I ′N ∪ I ′′N , I ′N = {I ∈ IN : I ∩ [−N b, N b] 6= ∅} (7.5)

I ′′N being the set of all I ∈ IN which have empty intersection with [−N b, N b]. The
cardinality |I ′N | of I ′N is bounded by c′Nβ+b with c′ a constant sufficiently large.
• The second good set is then:

X±2 :=

K⋂
k=1

X±2 (k),

X±2 (k) = ‖ 1

N
πxδ,±(t−k ) − ρ

δ,±(r, t−k )dr‖I′N ≤ e
δ‖ 1

N
πxδ,±k−1

− ρδ,±k−1dr‖IN

+c′′δ−1/2N−β + c′Nβ+b+α1−1
}

(7.6)

where c′ is the constant defined earlier and c′′ is a new (sufficiently large) constant which
can be taken equal to 2c where c is the constant in (4.5).
• The third good set X±3 involves the values n±k of the number of particles in the

stochastic barriers at the times t−k , namely n±k := |xδ,±(t−k )| ≡ πxδ,±(t−k )[R]:

X±3 =

K⋂
k=1

X±3 (k), X+
3 (k) = |n+

k − e
δN | ≤ Nα1}, X−3 (k) = |n−k − [N − eδNα0 ]| < Nα0

(7.7)
• The fourth good set X±4 involves what happens at time 0:

X±4 := {‖ 1

N
πxδ,±0

− ρδ,±(0, r)dr‖IN ≤ (cA + 1)Nβ+α1−1} (7.8)

where cA is such that cANβ is larger than the number intervals I which intersect the
support of ρ0.

We will prove in the next subsections the following propositions:
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Proposition 7.1. There are a constant c and N0 so that for N ≥ N0 and T < log logN in
X good for all k ∈ {0, .., 2n}

‖ 1

N
πxδ,±k

− ρδ,±k dr‖IN ≤ c
(
eT 2nδ−1/2N−1/12 + e2T 2nN−1/6

)
(7.9)

Proposition 7.2. There are c, c∗ and N0 so that for all N ≥ N0 and all T < log logN

P (N)
[
X good

]
≥ 1− c2nec

∗2−nTN−
1
6 (7.10)

The proof of Theorem 6.2 is then a direct consequence of the two propositions above.

7.2 Proof of Proposition 7.1

We prove here (7.9) for the upper barriers, the proof for the lower barriers is similar
and omitted. We fix in the sequel k ∈ {0, .., 2n}, the bounds will be uniform in k. We
postpone the proof that

‖ 1

N
πxδ,+k

− ρδ,+k dr‖IN ≤ ‖
1

N
πxδ,+(t−k ) − ρ

δ,+(r, t−k )dr‖IN +Nα1−1 (7.11)

In X+
1 πxδ,+k

[I] = 0 for all I ∈ I ′′N . Then, since kδ ≤ T , using (4.32) we get

‖ 1

N
πxδ,+(t−k ) − ρ

δ,+(r, t−k )dr‖IN ≤ ‖ 1

N
πxδ,+(t−k ) − ρ

δ,+(r, t−k )dr‖I′N

+ cbe
T T

Nb/2

N b/2!
(7.12)

Then by (7.11), (7.12) and (7.6)

‖ 1

N
πxδ,+k

− ρδ,+k dr‖IN ≤ eδ‖
1

N
πxδ,+k−1

− ρδ,+k−1dr‖IN + εN

εN := Nα1−1 + cbe
T T

Nb/2

N b/2!
+ c′′δ−1/2N−β + c′Nβ+b+α1−1} (7.13)

Hence by (7.8)

‖ 1

N
πxδ,+k

− ρδ,+k dr‖IN ≤ eδk(cA + 1)Nβ+α1−1 +

k−1∑
h=0

eδhεN (7.14)

We bound
∑k−1
h=0 e

δh ≤ eT 2n (because k ≤ 2n and δ2n = T ) and get

‖ 1

N
πxδ,±k

− ρδ,±k dr‖IN ≤ c
(
eT 2nδ−1/2N−1/12 + e2T 2n

TN
1/24

N1/24!
+ eT 2nN−1/6

)
hence recalling that N ≥ N0, N0 large enough, and T < log logN , we have for a new
constant c

‖ 1

N
πxδ,±k

− ρδ,±k dr‖IN ≤ c
(
eT 2nδ−1/2N−1/12 + e2T 2nN−1/6

)
(7.9) is therefore proved with the choice (7.3) of the parameters, pending the validity of
(7.11) that we prove next.

Proof of (7.11). To have lighter notation we write

dµ′′ = πxδ,+k
(dr), dν′′ = Nρδ,+k dr, dµ = πxδ,+(t−k )(dr), dν = Nρδ,+(r, t−k )dr
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µ′′ is obtained from µ by cutting on the left a mass eδN−N+θ, where, by (7.7), |θ| ≤ Nα1 .
Instead ν′′ is obtained from ν by cutting on the left a mass Θ = eδN −N .

If θ = 0 we are cutting the same mass from µ and ν; suppose µ has density f , ν
has density g and call f ′′ and g′′ the densities of µ′′ and ν′′. Since we are cutting mass
from the left the L1-norm of f ′′ − g′′ is not larger than that of f − g, see for instance
Proposition 5.2 in [5]. The whole point is then to prove that the same property holds for
the semi-norms, which is done in Lemma 7.3 below. In general however θ is not zero,
suppose for the sake of definiteness θ ≥ 0. The following is to reduce to the case θ = 0.
Let λ′′ be obtained from µ by cutting on the left a mass Θ = eδN −N , so that λ′′ = µ′′+ ρ

where ρ is a positive measure with mass θ. Then

‖µ′′ − λ′′‖IN ≤
∫
ρ(dr) = θ (7.15)

and therefore

‖µ′′ − ν′′‖IN ≤ ‖µ′′ − λ′′‖IN + ‖λ′′ − ν′′‖IN ≤ θ + ‖λ′′ − ν′′‖IN (7.16)

In X+ the last term is bounded by Nα1−1 + ‖λ′′ − ν′′‖IN while ‖λ′′ − ν′′‖IN ≤ ‖µ− ν′‖IN
as proved in the next Lemma, hence (7.11) and therefore also (7.9).

Lemma 7.3. Let µ and ν be two finite, positive measures on R with same mass M . and
let µ′′ and ν′′ be obtained from µ and ν by cutting on the left a mass Θ < M . Then

‖µ′′ − ν′′‖IN ≤ ‖µ− ν‖IN (7.17)

Proof. Let ψ′′ and ψ be the coarse grained versions of µ′′ and µ as defined in (6.2);
analogously φ′′ and φ are those relative to ν′′ and ν. Let rµ := inf{x : µ[(−∞, x]] ≥ Θ}: if
µ is non atomic then µ′′ is obtained by deleting the mass to the left of rµ, if instead there
is an atom at rµ then we need to take out from the atom as much mass as needed. Call
I∗ the interval in IN which contains rµ, I∗ is determined by the condition that∑

I′<I∗

µ[I ′] < Θ,
∑
I′≤I∗

µ[I ′] ≥ Θ

(where I ′ < I means that I ′ is to the left of I). It then follows that I∗ is the interval in IN
which contains Rµ where Rµ :

∫ Rµ
−∞ dxψ(x) = Θ. Moreover, calling I∗ =: [a, b),

µ′′[I∗] = µ[(−∞, b)]−Θ =

∫
dxψ(x)1x∈(−∞,b) −Θ =

∫
dx1x∈[Rµ,b)ψ(x)

For I > I∗ µ′′[I] =
∫
I
dxψ(x) so that for any I ∈ IN :

µ′′[I] =

∫
I

dxψ′(x), ψ′(x) = ψ(x)1x≥Rµ (7.18)

Rν and φ′ are defined similarly and the analogue of (7.18) holds. It then follows that for
any I ∈ IN : ∫

I

dr φ′(r) =

∫
I

dr φ′′(r),

∫
I

dr ψ′(r) =

∫
I

dr ψ′′(r) (7.19)

Since the cutting operation does not increase the L1 norm, see Proposition 5.2 in [5],∫
dr |φ′(r)− ψ′(r)| ≤

∫
dr |φ(r)− ψ(r)| = ‖µ− ν‖IN (7.20)
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By their definition φ′′(r) and ψ′′(r) are constant in each interval I, then by (7.19)∫
dr |φ′′(r)− ψ′′(r)| ≤

∫
dr |φ′(r)− ψ′(r)|

so that by (7.20)

‖ν′′ − µ′′‖IN =

∫
dr |φ′′(r)− ψ′′(r)| ≤

∫
dr |φ′(r)− ψ′(r)| ≤ ‖ν − µ‖IN

7.3 Proof of Proposition 7.2

We recall that the parameters in (7.2) have been fixed in (7.3). We will show in
Subsection 7.3.2 that

X good =
{ 4⋂
i=1

X+
i

}
∩
{ ⋂
i∈{1,3,4}

X−i
}⋂

Z−2 (7.21)

where Z−2 is defined in Subsection 7.3.2.
In the following subsections we will prove

P (N)[
(
X good

)c
] ≤ 8e−

b
4N

b
2 logN + 2n+1c′ecδN1+β+b−2α1

+ 2n+1[e2δ − 1]N1−2α1 + 2cA‖ρ0‖∞N1−2α1 (7.22)

where the i-th term on the right hand side bounds the corresponding term in (7.21).
(7.10) then follows from (7.22) observing that δ = 2−nT and the second term on the right
hand side is the largest one for N and T as in Proposition 7.2.

7.3.1 Bound of P (N)[(X±1 )c]

By (A.15)

P (N)[(X+
1 )c] + P (N)[(X−1 )c] ≤ 8ecN

aT−aNa logN ≤ 8e−
a
2N

a logN a =
b

2
=

1

24
(7.23)

where c is the constant introduced in Lemma A.2. The last inequality holds for N large
enough, because T < log logN .

7.3.2 Bound of P (N)[(X+
2 )c] and P (N)[(Z−2 )c]

Here we prove

2n∑
k=1

{P (N)[(X+
2 (k))c] + P (N)[(Z−2 (k))c]} ≤ 2n2c′ecδN1+β+b−2α1 (7.24)

and start by defining Z−2 (k).

In each interval (tk−1, tk) the upper barrier xδ,+(t) is in law the same as the basic
process y(t). This is however no longer true for the lower barrier xδ,−(t). In fact to prove
the stochastic inequality for the lower barrier we needed to stop the branching as soon
as |xδ,−(t)| = N .

To deal with that we use the following “trick”. We first define zδ,−(t) which is defined
like xδ,−(t) but without stopping the branching when the number of particles becomes
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equal to N . We then define

Z−2 :=

K⋂
k=1

Z−2 (k)

Z−2 (k) =
{
‖ 1

N
πzδ,−(t−k ) − ρ

δ,−(r, t−k )dr‖I′N ≤ e
δ‖ 1

N
πzδ,−k−1

− ρδ,−k−1‖IN

+c′′δ−1/2N−β + c′Nβ+b+α1−1
}

(7.25)

Lemma 7.4. Recalling the definition (7.7) of X−3 , for all k

X−2 (k) ∩ X−3 (k) = Z−2 (k) ∩ X−3 (k) (7.26)

Proof. In X−3 (k) we have that n−k = |xδ,−(t−k )| is bounded by

n−k − [N − eδNα0 ] + [N − eδNα0 ] ≤ Nα0 − eδNα0 +N < N

Then in X−3 (k) we have xδ,−(t) = zδ,−(t) for all t ∈ (tk−1, tk).

This is why we could replace X−2 by Z−2 and in the sequel we will estimate the latter.
We fix a time interval (t+k−1, t

−
k ) and observe that in this time interval both processes

xδ,+(t) and zδ,−(t) are the basic process y(t), they only differ from the initial condition
at time t+k−1. For notational simplicity we restrict to the + barrier and we call νt(dr) =

Nρδ,+(r, t+k−1 + t)dr, t ∈ [0, δ], y
0

= xδ,+k and

λ
y
0
t :=

∫
P
y
0

t (dy)πy(t) ≡ E[π
y
0

y(t)] (7.27)

where the superscript y
0

recalls that here we consider the basic process in the time
interval [0, δ] starting at time 0 from y

0
. By the triangular inequality we have:

‖π
y
0

y(δ) − νδ‖I′N ≤ ‖π
y
0

y(δ) − λ
y
0

δ ‖I′N + ‖λ
y
0

δ − νδ‖I′N (7.28)

Bound of the first term in (7.28). We have, we call t = δ below

P
y
0

t

[
‖π

y
0

y(t) − λ
y
0
t ‖I′N ≥ c

′Nβ+bNα1

]
≤
∑
I∈I′N

P
y
0

t [|π
y
0

y(t)(I)− λ
y
0
t (I)| > Nα1 ]

because the cardinality |I ′N | of I ′N is bounded by c′Nβ+b. By (A.6)

P
y
0

t [|π
y
0

y(t)(I)− λ
y
0
t (I)| > Nα1 ] ≤ ecδN1−2α1

Thus we get

P
y
0

t

[
‖π

y
0

y(t) − λ
y
0
t ‖I′N ≤ c

′Nβ+bNα1

]
≥ 1− c′Nβ+becδN1−2α1

Bound of the second term in (7.28). By the triangular inequality

‖λ
y
0
t − νt‖I′N ≤ ‖λ

y
0
t − λ

y′
0
t ‖I′N + ‖ν′t − νt‖I′N + ‖λ

y′
0
t − ν′t‖I′N (7.29)

where y′
0

is obtained from y
0

by shifting each x ∈ y
0

to the center xI of the set I ∈ IN
where x belongs. Analogously and recalling Theorem 4.1 for notation

ν′t(dr) =
∑
I∈IN

ν0(I)T ∗t (r, xI)dr =
∑
I∈IN

ν0(I)λxIt (dr)
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By (A.3) and Theorem A.1

‖λ
y
0
t − λ

y′
0
t ‖I′N ≤

∑
x∈y

0

‖λxt − λ
xI
t ‖I′N ≤

∑
x∈y

0

∫
R

dy |T ∗t (y, x)− T ∗t (y, xI)|

where given x ∈ y
0
xI is the center of the set I ∈ IN where x belongs. By (4.5)

‖λ
y
0
t − λ

y′
0
t ‖I′N ≤ Ncδ

−1/2N−β

because |x− xI | ≤ N−β . In an analogous way we prove that

‖ν′t − νt‖I′N ≤ Ncδ
−1/2N−β

The last term in (7.29) is bounded by

‖λ
y′
0
t − ν′t‖I′N ≤

∑
J∈IN

‖mJλ
xJ
t − ν0(J)λxJt ‖I′N =

∑
J∈IN

|mJ − ν0(J)|‖λxJt ‖I′N

mJ the number of particles in y
0

which are in J . Hence

‖λ
y′
0
t − ν′t‖I′N ≤

∑
J∈IN

et|mJ − ν0(J)| = et‖πy
0
− ν0‖IN

In conclusion calling c′′ = 2c

‖λ
y
0

δ − νδ|I′N ≤ c
′′δ−1/2N1−β + eδ‖πy

0
− ν0‖IN (7.30)

Thus by (7.28) and (7.30):

2n∑
k=1

{P (N)[(X+
2 (k))c] + P (N)[(Z−2 (k))c]} ≤ 2n2c′ecδN1+β+b−2α1

7.3.3 Bound of P (N)[(X±3 )c]

We are going to prove that

2n∑
k=1

{P (N)[|n+
k − e

δN | > Nα1 ] + P (N)[|n−k − [N − eδNα0 ]| > Nα0 ]} ≤ 2n2[e2δ − 1]N1−2α1

(7.31)
Recalling that n±k := πxδ,±(t−k )[R], we are going to use (A.7) with y

0
= xδ,±k−1. We have

2n∑
k=1

P (N)[|n+
k − e

δN | > Nα1 ] ≤ 2n[e2δ − 1]N1−2α1 (7.32)

because πxδ,+k−1
[R] = N and hence λ

y
0

δ (R) = eδN .

Analogously we have

2n∑
k=1

P (N)[|n−k − [N − eδNα0 ]| > Nα0 ] ≤ 2n[e2δ − 1]N1−2α0 (7.33)

because πxδ,−k−1
[R] = e−δN −Nα0 and hence λ

y
0

δ (R) = N − eδNα0 . Recall that α1 = α0 so

that the two bounds are identical and (7.31) is proved.
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7.3.4 Bound of P (N)[(X±4 )c]

Here we prove the following two inequalities:

P (N)
[
‖ 1

N
πx0
− ρ0(r)dr‖IN ≤ cANβ+α1−1

]
≥ 1− cA‖ρ0‖∞N1−2α1 (7.34)

P (N)
[
‖ 1

N
πxδ,−0

− ρδ,−0 dr‖IN ≤ (cA + 1)Nβ+α1−1
]
≥ 1− cA‖ρ0‖∞N1−2α1 (7.35)

which imply that P (N)[X±4 ] ≥ 1− cA‖ρ0‖∞N1−2α1 .

Proof of (7.34). Observe that

P (N)
[
‖ 1

N
πx0
− ρ0(r)dr‖IN ≥ cANβ+α1−1

]
≤
∑
I

P (N)
[
| 1

N
πx0

[I]−
∫
I

dr ρ0(r)| ≥ Nα1−1
]

because cANβ bounds the number of intervals I which intersect the support of ρ0. Re-
calling that x0 is the configuration obtained by taking N independent copies distributed
as ρ0(r)dr we use the Chebyshev inequality with the squares to get

P (N)[|πx0
[I]−N

∫
I

dr ρ0(r)| ≥ Nα1 ] ≤ N−2α1E(N)
[( N∑

i=1

(
1xi∈I −

∫
I

dr ρ0(r)
))2]

= N−2α1NE(N)
[(

1xi∈I −
∫
I

dr ρ0(r)
)2]

≤ N1−2α1

∫
I

dr ρ0(r) ≤ ‖ρ0‖∞N1−2α1N−β

We thus get (7.34).

Proof of (7.35). We bound

‖πxδ,−0
−Nρδ,−0 dr‖IN ≤ ‖πxδ,−0

− µ‖IN +Nα0

where µ is obtained from the measure Nρδ,−0 dr by cutting on the left a mass Nα0 : the
inequality follows from (7.15). The measures πxδ,−0

and µ are obtained from πx0
and

Nρ0dr by cutting on the left the same mass, therefore by Lemma 7.3

‖πxδ,−0
− µ‖IN ≤ ‖πx0

−Nρ0dr‖IN

Then by (7.34)

P (N)
[
‖πxδ,−0

− µ‖IN ≤ cANβ+α1

]
≥ 1− cA‖ρ0‖∞N1−2α1

therefore

P (N)
[
‖πxδ,−0

−Nρδ,−0 dr‖IN ≤ cANβ+α1 +Nα0

]
≥ 1− cA‖ρ0‖∞N1−2α1

With the choice α0 = α1, cANβ+α1 +Nα0 ≤ (cA + 1)Nβ+α1 hence

P (N)
[
‖ 1

N
πxδ,−0

− ρδ,−0 dr‖IN ≤ (cA + 1)Nβ+α1−1
]
≥ 1− cA‖ρ0‖∞N1−2α1
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A Probability estimates

In the time intervals (kδ, (k+ 1)δ) the process xδ,±(t) is without deaths, it is therefore
the basic process defined in Section 2. In the next theorem we will prove that in the
average the basic process behaves as the deterministic free evolution of Subsection 4.1.
We will then use this to prove estimates which have been used in Section 7.

Recall that P y0 denotes the law of the basic process starting from the configuration
y

0
. Calling P xt (dy) the law of y(t) starting from the configuration y

0
consisting of a single

particle at x, we define the averaged counting measure at time t starting from x as

λxt (dr) :=

∫
P xt (dy)πy(dr) (A.1)

The next theorem is a key step in the comparison between stochastic and deterministic
barriers. Recall from Section 4 the definition of T ∗t (x, y).

Theorem A.1. With the above notation λxt (dr) = T ∗t (r, x)dr.

Proof. Let φ be a smooth test function and call

h(x, t) =

∫
λxt (dr)φ(r) (A.2)

By translation invariance for any a ∈ R

h(x+ a, t) =

∫
λxt (dr)φ(r − a)

which proves that h(x, t) is a smooth function of x. It then follows that

∂

∂t
h(x, t) =

1

2

∂2

∂x2
h(x, t) +

∫
dy p(x, y)h(y, t)

with h(x, 0) = φ(x). Thus h(x, t) = eLtφ(x). By (A.2)
∫
λxt (dr)φ(r) = eLtφ(x) hence

λxt (dr) = eLt(x, r)dr.

Observe that since the branchings are independent:∫
P
y
0

t (dy)φ(y) =

∫
{
∏
x∈y

0

P xt (dy(x))}φ
( ⋃
x∈y(0)

y(x)
)

and in particular ∫
P
y
0

t (dy)

∫
πy(dr)f(r) =

∑
x∈y

0

∫
P xt (dy)

∫
πy(dr)f(r) (A.3)

Moreover the number of particles n(t) = |y(t)| in the basic process is a Markov process
with state space N and generator

Kf(n) = n
(
f(n+ 1)− f(n)

)
(A.4)

Denote by Pn0 the law of n(t) starting from n0 and by En0 its expectation.

Lemma A.2. There is c so that for any positive integer k

En0 [n(t)k] ≤ ecktn0 (A.5)
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Proof. Call hk(t) the left hand side of (A.5), then

d

dt
hk(t) = En0 [n(t){(n(t) + 1)k − n(t)k] ≤ kEn0 [n(t)(n(t) + 1)k−1] ≤ ckhk(t)

Lemma A.3. Let T > 0, δ = 2−nT and α1 = 2
3 . Let y

0
be a configuration with ≤ N

particles and for t ≤ δ call λ
y
0
t (dr) =

∑
x∈y

0

λxt (dr), see (A.1). Then for any interval

I ∈ IN :

P
y
0

t

[
|π
y
0

y(t)(I)− λ
y
0
t (I)| ≥ Nα1 | ≤ e2cδN1−2α1 (A.6)

P
y
0

t

[
|π
y
0

y(t)(R)− λ
y
0
t (R)| ≥ Nα1

]
≤ [e2δ − 1]N1−2α1 (A.7)

Proof. By (A.3)

|π
y
0

y(t)(I)− λ
y
0
t (I)| = |

∑
x∈y

0

{πxy(t)(I)− λxt (I)}| (A.8)

The variables {πxy(t)(I) − λxt (I)} are mutually independent and centered then by the

Chebishev inequality with the squares we get:

P
y
0

t

[
|π
y
0

y(t)(I)− λ
y
0
t (I)| ≥ Nα1 |

]
≤ N−2α1

∑
x∈y(0)

{
∫
P xt (dy)πy(I)2 − λxt [I]2}

and (A.6) follows from (A.5). The left hand side of (A.7) is bounded by

≤ N−2α1

∑
x∈y(0)

{
∫
P xt (dy)πy(R)2 − λxt [R]2}

We have ∫
P xt (dy)πy(R)2 = 2e2t − et, λxt [R]2 = e2t

hence (A.7) recalling that the cardinality of y(0) is ≤ N .

Lemma A.4. Let 0 < T < log logN and y
0

a configuration with ≤ N particles all in the
support [−A,A] of ρ0, then

P y0
[
y(t) ∩ [−N b, N b]c = ∅, 0 ≤ t ≤ T

]
≥ 1− 4ecN

aT−aNa logN (A.9)

where b = 1
12 , a = b

2 and c is the constant in Lemma A.2.

Proof. We will only prove that

P y0
[
y(t) ∩ [N b,∞) = ∅, 0 ≤ t ≤ T

]
≥ 1− 2ecN

aT−aNa logN (A.10)

as the bound for the probability of y(t) ∩ (−∞,−N b] = ∅ is similar. The proof is based
on estimating the probability of “large” values of n(t) by using Lemma A.2, while for
the “small” values of n(t) we will reduce to the probability of excursions of the Brownian
motion. For an alternative proof see for instance [7].

We have

P y0
[
there is t ∈ [0, T ] : y(t) ∩ [N b,∞) 6= ∅

]
≤ NP {A}

[
there is t ∈ [0, T ] : y(t) ∩ [N b,∞) 6= ∅

]
(A.11)
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where P {A} is the law of y(t) starting from a single particle at position A, recall that
[−A,A] is the support of the initial density ρ0 and that [−ξ, ξ] is the support of p(0, x).
Let z(t) be the process of branching Brownian particles where at any branching time a
new particle is put at x+ ξ (if generated by a particle at x) while all the particles except
the new one are shifted to the right by ξ. Thus z(t) = x0(t) + n(t)ξ where n(t) is the
number of branching times till t and x0(t) is the process where the branching is local
(p(x, y) = δ(y− x)). Calling P0 the law of the process x0(t) starting from a single particle
at position 0,

NP {A}
[
there is t ∈ [0, T ] : y(t) ∩ [N b,∞) 6= ∅

]
≤ NP0

[
there is t ∈ [0, T ] : x0(t) ∩ [N b − n(t)ξ −A,∞) 6= ∅

]
(A.12)

By Lemma A.2 for any integer k

P0
[
n(T ) ≥ Na

]
≤ N−akeckT (A.13)

which will be used with a = b/2. We choose k = Na, then the right hand side of (A.12) is
bounded by

≤ ecN
aT−aNa logN +NP0

[
n(T ) < Na; ∃t ∈ [0, T ] : x0(t)∩ [N b−Naξ−A,∞) 6= ∅

]
(A.14)

Let n(t) = k and T one of the trees obtained from the branching history with k outputs.
To each branch of the tree we associate a particle, the law of its motion is that of a
Brownian motion B(t) starting from 0. Since there are at most Na branches, the second
term in (A.14) is bounded by ≤ N1+aP

[
max0≤t≤T , |B(t)| ≥ N b −Naξ − A

]
Thus, since

T < log logN the second term in (A.14) is smaller than the first one, hence (A.9) (recall
that we have supposed that N ≥ N0 with N0 large enough, see the paragraph: The initial
configuration in Section 2).

Corollary A.5. With the notation of Lemma A.4

P
[
xδ,±(t) ∩ [−N b, N b]c = ∅, 0 ≤ t ≤ T

]
≥ 1− 4ecN

aT−aNa logN (A.15)

Proof. The processes xδ,±(t) can be realized as subsets of the process y(t), hence
(A.15).
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